

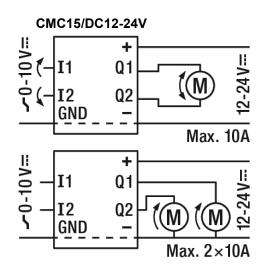
Motor Controller CMC15, CMC16

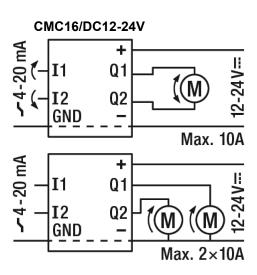
1 Features

- Power supply DC 12...24 V
- Analogue control inputs 0 ... 10 V or 4 ... 20 mA
- Motor current 10 A continuously, temporary 20 A
- Adjustable start and break ramps
- · Status and error displayed by LED
- Short-circuit-proof
- Wear free

2 General description

The CMC15 and the CMC16 are control devices for DC motor operation. The Motor speed is set by corresponding signals at the analogue inputs. To adjust the acceleration and deceleration ramp two potentiometers are used. Up to two motors can be operated independently of each other. Mechanical shocks and high current peaks are prevented; the lifetime of the whole system is increased.

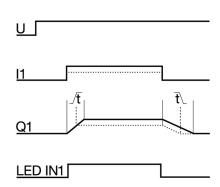

Motor Controllers of the CMC line comply to DIN standard 43880. Installation width is 14 mm.


Technical specification subject to change without notice.

3 Order designation

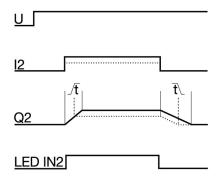
ComatReleco Motor Controller analogue 0 ... 10 V CMC15/DC12-24V ComatReleco Motor Controller analogue 4 ... 20 mA CMC16/DC12-24V

4 Connecting diagram


Terminal	CMC15/DC12-24V	CMC16/DC12-24V		
I1	Analogue Input 1 (0 10 V)	Analogue Input 1 (4 20 mA)		
12	Analogue Input 2 (0 10 V) Analogue Input 2 (4 20 mA)			
GND	Ground of control signals	Ground of control signals		
Q1	Output 1	Output 1		
Q2	Output 2	Output 2		
+, -	Power supply			

5 Function description

The CMC15 and the CMC16 can be used to operate one or two DC motors simultaneously. In case of one motor operation an analogue signal at I1 or I2 is used to set the speed and the direction of rotation. For two motor operation I1 is used to control the motor connected to Q1 and I2 controls the motor connected to Q2. The acceleration and deceleration ramp can be set independently between 0 ... 2 s using two potentiometers. Exceeding current or torque peaks are avoided due to controlled acceleration and deceleration. The voltage at the load is adjusted very low-loss by pulse width modulation (PWM). The power output stage is protected against short-circuit and overheating. Errors are displayed by LED.


5.1 Operation mode with acceleration and deceleration ramp¹

Ramp time t > 0 s

Triggering input I1 the voltage at output Q1 will be ramped up linearly during the preset time by the potentiometer. The motor is accelerated to speed set by signal at I1.

If input I1 is switched off (or signal is 0 V / 4 mA) the voltage at output Q1 is shut down linearly to zero during the preset time. The motor is decelerated to a halt.

Triggering input I2 the voltage at output Q2 will be ramped up linearly during the preset time by the potentiometer. The motor is accelerated to speed set by signal at I2.

If input I2 is switched off (or signal is 0 V / 4 mA) the voltage at output Q2 is shut down linearly to zero during the preset time. The motor is decelerated to a halt.

¹ The acceleration and deceleration ramp can also be set by analogue signal from a master controller. Please refer to potentiometer settings and adjust if necessary.

6 Specifications

6.1 General data

6.1.1 Mechanical data

Housing System DIN
Outside dimension (W x H x D): 14 x 90 x 63 mm
Fastening DIN Rail TS35

Connection Screw terminal 2.5 mm²

Ingress protection degree IP20
Case material Aluminum
Weight 80 g

6.1.2 Ambient conditions

Storage temperature range $-40 \,^{\circ}\text{C} \dots +85 \,^{\circ}\text{C}$ Operating temperature range $-25 \,^{\circ}\text{C} \dots +70 \,^{\circ}\text{C}$

Relative humidity 10 % ... +95 % (non condensing)

6.1.3 Life cycle

Expected life time (MTTF) 100 000 h (at 25 °C)

6.2 Electrical data

6.2.1 Power supply +, -

Nominal voltage

Admissible voltage range

Max. current consumption without load

Max. power consumption without load at 12 V

Max. power consumption without load at 24 V

Max. power consumption without load at 24 V

240 mW

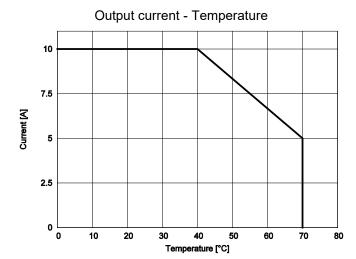
6.2.2 Analogue inputs I1, I2

6.2.3 Outputs Q1, Q2

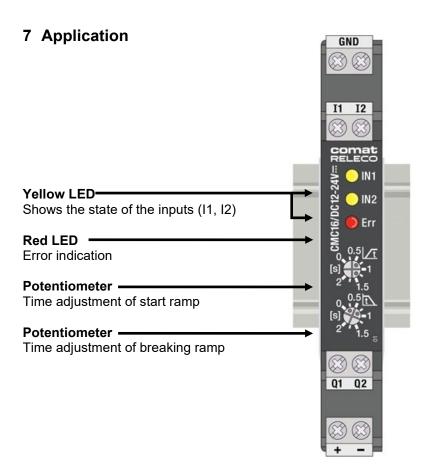
Nominal voltage
Output
MOSFET H-bridge
Nominal current (40 °C max.)
Inrush current (3 s max.)
Switching current 24 V DC-1, DC-13
Switching current 24 V DC-3, DC-5

12 ... 24 V DC
MOSFET H-bridge
10 A
10 A

6.3 Time response

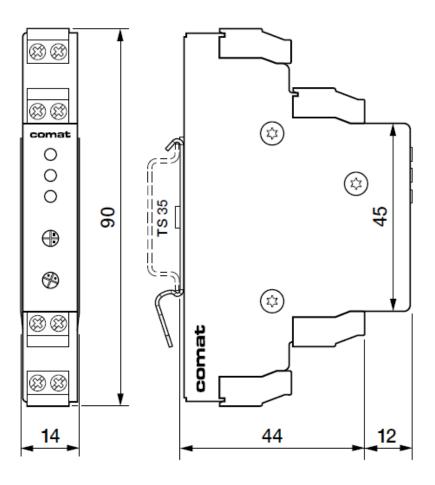

6.3.1 Ramps²

 $\begin{array}{cc} \text{Start ramp} & 0 \dots 2 \text{ s} \\ \text{Breaking ramp} & 0 \dots 2 \text{ s} \end{array}$


² Time information corresponding to a jump over the full analogue input range (0 to 10 V or 4 to 20 mA and conversely).

6.4 Diagrams

7.1 Function display


Element	Functions one load	Functions two loads
Poti LT	Ramp time acceleration 0 2 s	Ramp time acceleration 0 2 s
Poti t	Ramp time deceleration 0 2 s	Ramp time deceleration 0 2 s
LED IN1	Signal at analogue input I1, motor in motion e.g. forward	Signal at analogue input I1, motor 1 is on
LED IN2	Signal at analogue input I2, motor in motion e.g. backward	Signal at analogue input I2, motor 2 is on
LED Err (Error)	Error detected, see chapter 7.2 Error display	Error detected, see chapter 7.2 Error display

7.2 Error display

LED Err (red)	Status		Troubleshooting
Not illuminated		Normal operation	
Illuminated at acceleration		Output current too high (> 12.5 A)	Reduce the load, extend the acceleration ramp
Blinking Output stage overheated		Output stage overheated	Cool down (> 10 s), switch off inputs, reduce the load, reduce the voltage

8 Dimension

9 Standards

Interference immunity EN 61000-6-2:2005

EN 61000-4-2:2001 Level 3 (Air: 8 kV)

EN 61000-4-4:2004 Level 3 (2 kV)

EN 61000-4-5:2006 (100 V)

Interference emission EN 61000-6-3:2007

EN 55022:2006 Class B

Safety EN 60730-1:2000

Conformities, identifications CE

10 Revision history

Version	Revision date	Responsible	Realized modifications
55082-027-57-002	27.09.2013	Mi, Cp	Version 1
55082-027-57-002	13.03.2015	Mi	Increased output current of 10 A from lot code 1510